






# AVIATION TWIN TRANSITION CLUSTER

A EUROPEAN INITIATIVE FOR A SUSTAINABLE FUTURE







# RefMap Clustering Event 2025

Advancing Sustainable Aviation & Urban Air Mobility

# Holistic Assessment and Design Approaches Towards Sustainable Aviation

Prof. Angelos Filippatos,
Department of Mechanical Engineering and Aeronautics, University of Patras





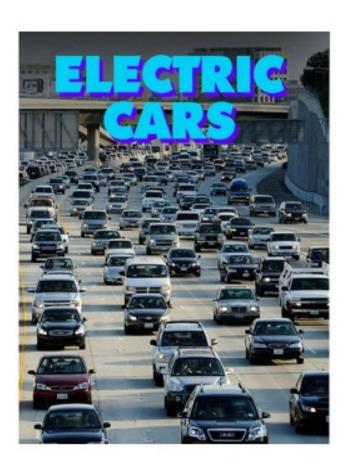


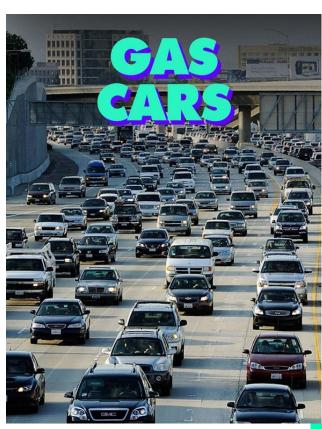




## What is truly sustainable?

## **Sustainable (?) Aviation**





Jet fuel airplanes



Sustainable airplanes

## Sustainable (?) Mobility







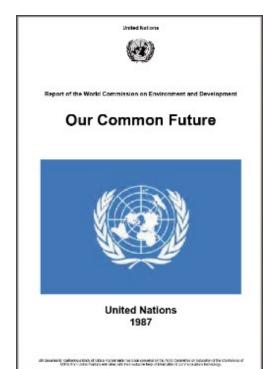




## A sustainable aviation?

Clean Aviation's ultimate objective is to reach net-zero greenhouse gas emissions, and to enable a climate- neutral aviation system in Europe by 2050.












## Sustainability: Understanding the Basics



In 1987, the 'Our Common Future' report by the UN Brundtland Commission was published. It is considered one of the most regarded, simplified definitions in the sustainability movement, which made the term sustainable development, popular:

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs." 1





-0



14 LIFE BELOW WATER



15 UFE ON LAND





 $\langle = \rangle$ 

16 PEACE, JUSTICI













- > The Sustainable Development Goals (SDGs)<sup>2</sup>, were adopted by the United Nations in 2015 as a universal call to action to end poverty, protect the planet, and ensure that by 2030 all people enjoy peace and prosperity.
- They are considered as the pathways to achieve sustainability at the long-term

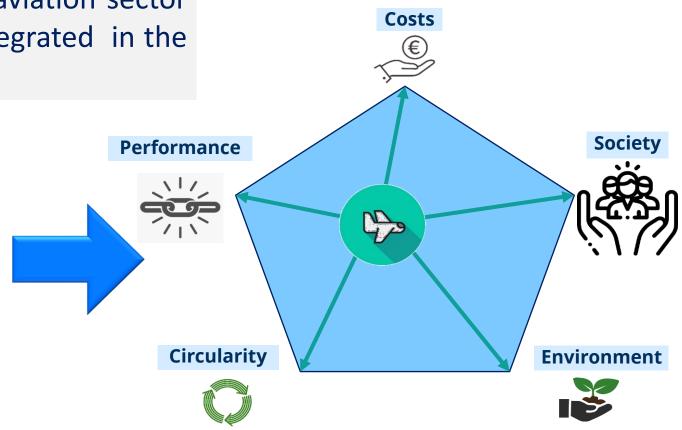
[1] Idowu, S.O.; Capaldi, N.; Zu, L.; Gupta, A.D. (Eds.) Encyclopedia of Corporate Social Responsibility; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-28035-1. [2] THE 17 GOALS | Sustainable Development (un.org)





## Sustainability in aviation



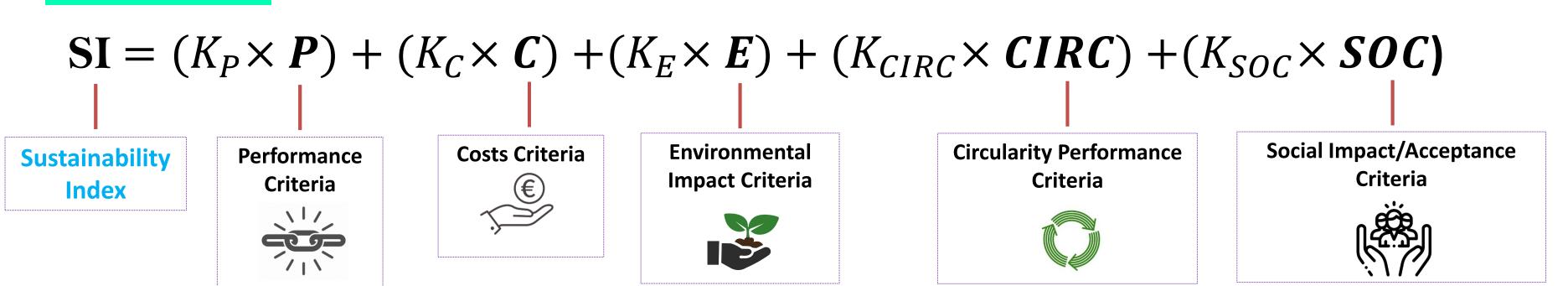

- In the aviation sector, sustainability is interpreted primarily as environmental sustainability and is mainly focused on the decarbonization of the sector.
- Environmental sustainability is crucial for the viability of the sector; however, it is only a part of a bigger picture.
- In aviation today, the design process is primarily guided by considerations of weight reduction and cost efficiency.

Notable progress has been made in eco-design, also evident in initiatives within the aviation sector such as Clean Sky 2 and Clean Aviation; yet, ecoDESIGN approaches are still hardly integrated in the aviation sector.



Eco-design standard: ISO 14062:2002 - EN ISO 14006:2011

Eco-design is understood as the integration of environmental aspects into product design and development, with the aim of reducing adverse environmental impacts










## A proposed index to measure sustainability



- A hybrid MCDM (AHP+weighted sum) is proposed to obtain the aggregated metric of sustainability
- $K_{P}$ ,  $K_{C}$ ,  $K_{E}$ ,  $K_{CIRC}$  and  $K_{SOC}$ , are subjective weight factors obtained from the AHP (Analytic Hierarchy Process) <u>Saaty scale</u>, reflecting the importance of each term to the overall Index value.

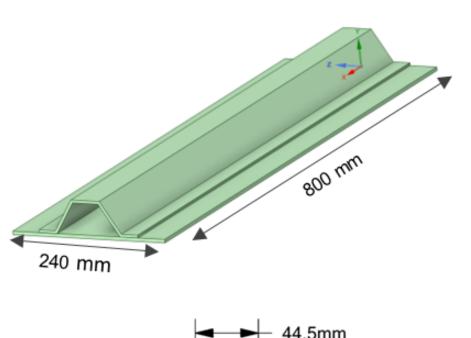
| Numerical value | Definition              |  |
|-----------------|-------------------------|--|
| 1               | Equal importance        |  |
| 3               | Moderate importance     |  |
| 5               | Strong importance       |  |
| 7               | Demonstrated importance |  |
| 9               | Absolute importance     |  |
| 2,4,6,8         | Intermediate values     |  |

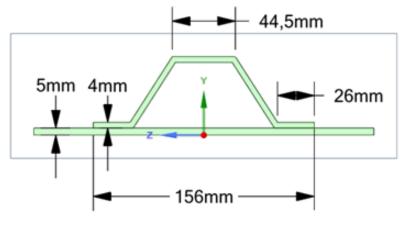
• A min-max normalization is employed to normalize the considered metrics to a 0-1 range

\*Markatos, D.N.; Pantelakis, S.G. Assessment of the Impact of Material Selection on Aviation Sustainability, from a Circular Economy Perspective. Aerospace 2022, 9, 52. https://doi.org/10.3390/aerospace9020052

\*Filippatos, A.; Markatos, D.; Tzortzinis, G.; Abhyankar, K.; Malefaki, S.; Gude, M.; Pantelakis, S. Sustainability-Driven Design of Aircraft Composite Components. Aerospace 2024, 11, 86. https://doi.org/10.3390/aerospace11010086






## **Aviation Component Level Demonstration**

**Use case:** Hat Stiffened Panel with multiple material combinations/ geometrical configurations

Multiple material combinations, appropriate for aerospace applications have been considered





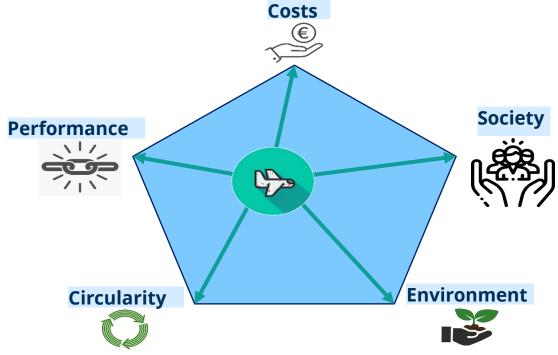
Reference geometry



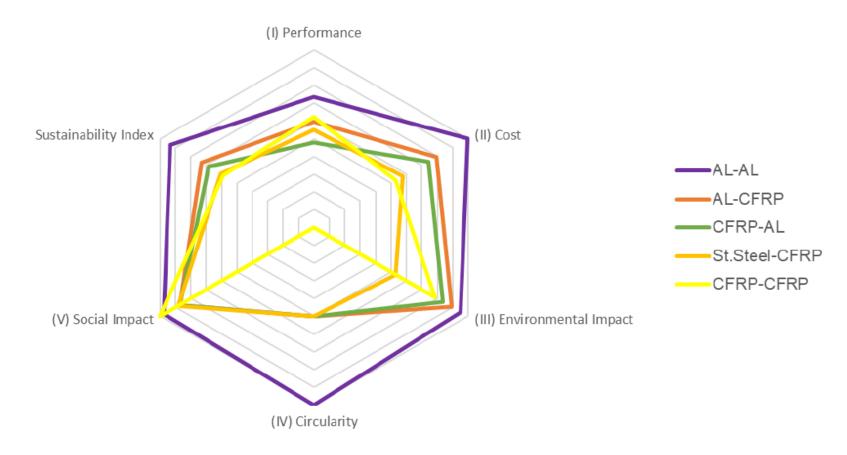
Filippatos, A.; Markatos, D.; Theochari, A.; Pantelakis, S. Integrating Sustainability in Aircraft Component Design: Towards a Transition from Eco-Driven to Sustainability-Driven Design. *Aerospace* **2025**, *12*, 140. https://doi.org/10.3390/aerospace12020140

Reference case material

combination






# Sustainability Assessment Results Cradle-to-gate

$$SI = K_P \times P + K_C \times C + K_E \times E + K_{CIRC} \times CIRC + Ksoc \times SOC \leq 1$$



#### Radar Chart of Optimal Configurations



**Equal Weights scenario** 

|                                                       | •                       |                  |  |
|-------------------------------------------------------|-------------------------|------------------|--|
| Design Configurations Ranking                         |                         |                  |  |
| Thickness skin (mm)                                   | Thickness stringer (mm) | Crown width (mm) |  |
| No.1 - Aluminium - Aluminium - SI = $0.912 \pm 0.011$ |                         |                  |  |
| 5.40 ±0.46                                            | 5.31 ± 0.59             | 47.94 ± 8.93     |  |
| No.2 - Aluminium - CFRP - SI = 0.667 ± 0.033          |                         |                  |  |
| 5.30 ± 0.51                                           | 4.58 ± 0.95             | 51.13 ± 9.07     |  |
| No.3 - CFRP - Aluminium - SI = 0.625 ± 0.029          |                         |                  |  |
| 4.85 ± 0.81                                           | 5.36 ± 0.55             | 47.74 ± 9.10     |  |
| No.4 - St.Steel-CFRP - SI = 0.553 ± 0.027             |                         |                  |  |
| 5.25 ± 0.55                                           | 4.72 ± 0.91             | 49.77 ± 9.41     |  |
| No. 5 - CFRP - CFRP - SI = 0.486 ± 0.047              |                         |                  |  |
| 4.50 ± 0.94                                           | 4.50 ± 0.94             | 50.00 ± 9.42     |  |





**Technology impact** 

at aircraft level



**Exploitation** 

strategy

**Preliminary** 

designs

## Aircraft Level



**EXAELIA:** Towards flying testbeds for

novel long-range aircraft
Call: HORIZON-CL4-2021-RESILIENCE-01



### **Project Objectives:**

Investigate the potential emissions reduction of long-range air traffic offered by promising blended wing body aircraft configurations and by hydrogen-powered tube-and-wing configurations, including their constituting radical new technologies.



Develop roadmaps, but also operational and business plans, for the further development of the EXAELIA flying testbeds and the use of these assets in the development of the future long-range aircraft.



**Budget:** 16.2 Mio EUR

Partners: 23





























**Future** 

LR aircraft

Flight test

needs

















**EXAELIA** 

flying test bed families







## Framework Level



IMPACT MONITOR: technology and policy assessment of the environmental-, economic- and societal-impact of European aviation R&I. Call: HORIZON-CL5-2022-D5-01







Evolve an assessment framework/toolbox that provides a systematic approach of the complete cycle of performing holistic environmental, economic and societal impact assessments of European aviation R&I

Develop a scalable, open source, distributed, multidisciplinary, modular, and model independent collaborative assessment framework & toolbox to support holistic impact monitoring



### **Project Objectives:**



Demonstrate the collaborative framework robustness via multi-level use cases

**Duration:** 24 Months

**Budget:** 2,2 Mio EUR

Partners: 10

Establish interfaces with, and reach out to key stakeholders in European aviation R&I





Educate students and broader community with broader access to the assessment toolbox and the collaborative assessment framework through initiating an Impact Monitor Academy

### **Project's Methodology**







## Take Away



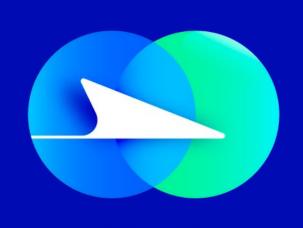


- 1. Sustainability needs to be Defined in the Aviation Sector, towards Common Paths to Global Sustainability Goals
- 2. Holistic Definitions and Integration of Sustainability to Design Methodologies become Crucial as the New-Generation Aviation Systems are Developed
- 3. To be Useful in everyday Engineering, Sustainability Assessment needs to be Applicable in Multi-Level Approaches.



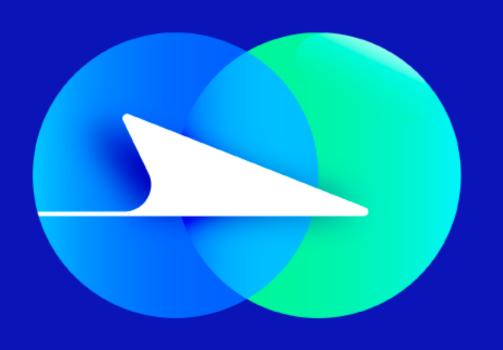
For more information:

www.refmap.eu






## thank you for your attention!




# Q&A/Closing









# AVIATION TWIN TRANSITION CLUSTER