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Climate Change, Aviation’s Contribution & Mitigation Measures

e 2024 was the first year exceeding 1.5°C above

and form ice.

I Warming impact
B Cooling impact
——15-95% Confidence

How do contrails
warm the Earth?

Operational Measures
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Some contrails can spread
and merge, covering
thousands of square miles
and trapping heat into the
Earth’s atmosphere.
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e Most immediate measures:

[millions of

— Sustainable aviation fuels (SAFs)
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— Climate-friendly operations
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Climate-optimized flight planning and sustainable aviation fuels

I) Climate-optimized routing to mitigate aviation-induced non-CO, climate effects

’ L - Cost-optimal route
Climate-sensitive areas

Climate-Optimized Flight Planning

+ Mitigation of non-CO, climate effects
* NO_ -induced ozone (O,) and methane (CH,)
« Contrails

et s s i (i

Sustainable Aviation Fuels:

+ WTW CO,-eq. emissions by up to 94%
+ reduce fuel flow by up to 2.5% (thus, CO, emissions)
+ mitigate non-CO2 effects, most notably contrails.

A. Simorgh and M. Soler, "Climate-optimized flight planning can
effectively reduce the environmental footprint of aviation in
Europe at low operational costs," Nature Communications Earth
& Environment, 2025.
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Climate-optimized flight planning and sustainable aviation fuels: Challenges

Climate-Optimized Flight Planning

+ Mitigation of non-CO, climate effects
* NO_ -induced ozone (O,) and methane (CH,)
« Contrails

- Degradation of operational manageability
(Baneshi et al. 2023-2025)

Sustainable Aviation Fuels:

+ WTW CO,-eq. emissions by up to 94%
+ reduce fuel flow by up to 2.5% (thus, CO, emissions)
+ mitigate non-CO2 effects, most notably contrails.

- More production-intensive and costly than kerosene,
leading to limited availability in the short term.

Research Question: How can we maximize their
environmental benefits while accounting for
operational manageability and current SAF limitations?

I) Climate-optimized routing to mitigate aviation-induced non-CO, climate effects

it i i st S s i

(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

B

Cost-optimal route

Engine emits water Vapor condenses on soot Droplets freeze
vapor and soot and pre-existing aerosols into ice particles
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Cleaner burning Reduced soot Increased size Reduced initial ice crystals
(lower aromatic content) (Water vapor condenses Reduced life time
on fewer soot particles). (Fewer particles to act as

cond. nuclei, less dense contrails)
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Introduced Concept: Smart Use of SAF and Climate-Optimal Routing

Smart (or targeted) application of measures:

* Minimal disruption to current BAU operations
* e.g., limited rerouting by focusing on
high-impact flights
* Targeted SAF deployment

e Using it on flights that generate strongly

warming contrails (Teoh et al. 2022)

Objective function of flight planning:

J = Operational Cost + El * Climate Impact

Trajectory Optimization

Climate Impact Estimation Model

pycontrails &

CoCiP (Contrails) ESZ
-Gridded CoCiP
-Traj. CoCiP

- EPS weather forecast

- Origin airport

- Departure time

- Destination airport
- Initial flight mass
- Aircraft type
-Airspace structure

- Routing options

Decision-Making

-Objective (i.e., Contrails EF)
-SAF availability
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-Extra cost

-Maximum rerouting

Robust Climate-Optimized Flight Planning (Kerosene & SAF)

-Likely to have increased size
(due to higher water vapor emiss.)
+Likely to show reduced intensity '
(due to lower soot)
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Large-scale analysis: climate-optimized flight planning with kerosene

Scenario

e Date: All daysin 2023 (0000UTC and 1200UTC)
* Flights: Top 150 routes in 2018 ranked using ASK
* Uncertainties: Ensemble Weather Data (ERA5)

e Climate impact estimation model: CoCiP v0.51 (Grid/trajectory-based)
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—— Cost-Optimal Route (Kersosene; Mitigation Potential: 0.0)%
—— (Climate-Optimal Route (Kerosene; 0.01 Extra Cost; Mitigation Potential: -78.18)%
—— (Climate-Optimal Routes (Kerosene; 0.05 Extra Cost; Mitigation Potential: -141.04)%
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* Avoiding the formation of warming
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contrails during winter

Mitigation Potential Achieved Primarily Through:
e Avoidance of warming contrails

e Generation of cooling contrails whenever feasible
(predominantly during spring)
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* Favoring the formation of cooling

contrails during spring
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* No or Limited mitigation potential
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during summer
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Uniform SAF distribution (for cost-optimal routing option)
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* On average, SAF reduces contrail-related climate impact (though the assumed usage levels are not yet realistic).

* |In winter, SAF is beneficial when used on flights generating warming contrails.

* In spring, SAF can increase climate impact by reducing cooling potential.
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Smart SAF usage and climate-optimized flight planning (2% SAF, +0.01 Cost)
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—— Cost-Optimal Route (Uniform distribution of 2% SAF; Mitigation Potential: -1.38%)
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* Smart usage of limited SAF can provide substantial climate benefits (even higher than 100% uniform SAF usage)
* This is achieved by allocating SAF to flights that form strongly warming contrails.
e Overall, using SAF can lead to a 30-40% reduction in the climate effects of contrails for both cost-optimal and climate-optimal

routing options.
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Case Study: Mitigation Potential for Varying Percentages of SAF Usage

Mitigation Potential w.r.t. Cost-Optimal Routing Option (Kerosene)
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* In terms of the climate effects of contrails, more SAF does not necessarily provide considerable mitigation:

* Many flights do not form contrails

* Some flights generate cooling contrails during daylight hours
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for your attention! Q& A I
Abolfazl Simorgh ClOSi n g
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For more information:
www.refmap.eu
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Aviation-Induced Climate Change Mitigation Measures

....

Technological Advancements

H,-powere Electric (-Hybrid)
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Operational Measures
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Temperature Change Change in Precipitation Rise of Sea Level
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