

AVIATION TWIN TRANSITION CLUSTER

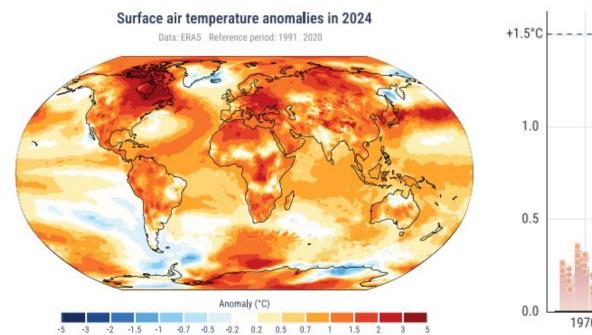
A EUROPEAN INITIATIVE FOR A SUSTAINABLE FUTURE

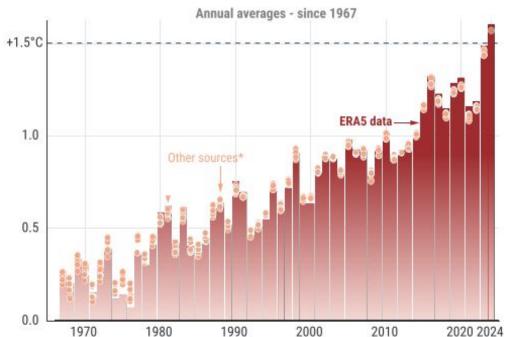
RefMap Clustering Event 2025

Advancing Sustainable Aviation & Urban Air Mobility

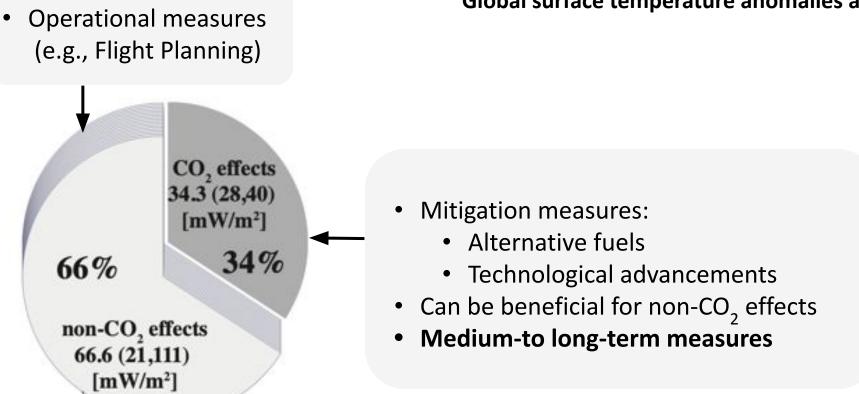
Aircraft Trajectory Planning for Climate Impact Mitigation Considering Air Traffic Complexity: A Constrained Multi-Agent Reinforcement Learning Approach

Fateme Baneshi, Universidad Carlos III de Madrid




In 2024, the annual average temperature exceeded 1.5°C above pre-industrial levels for the first time.

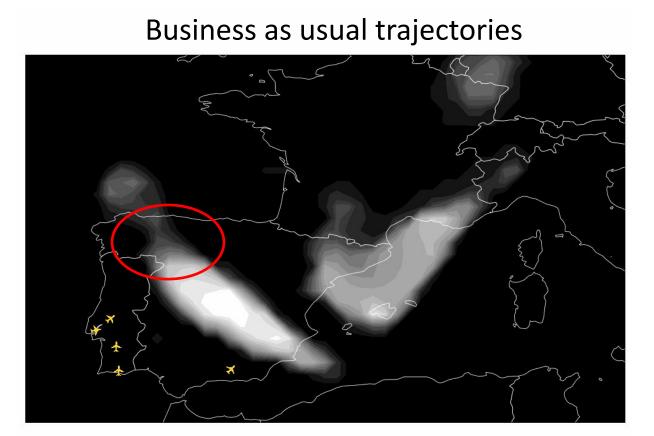
Aviation is one of the contributors to global warming:


- Carbon dioxide (CO₂)
- Non-CO₂ effects, e.g., Contrails

Due to the rapid growth of the aviation sector, it faced increasing pressure to reduce its climate footprint.

Global surface temperature anomalies and trends.

- Feasible with existing infrastructures
- Relatively immediate solutions



Research question

Is optimizing individual trajectories to reduce climate impact operationally feasible?

Climate-optimized trajectories

Adopting individually optimized trajectories:

- Redistributes traffic flow
- Increases the congestion in specific areas
- It can adversely affect the overall performance of the ATM system

Climate-optimal flight planning needs to be studied at the network-scale

State-of-the-art

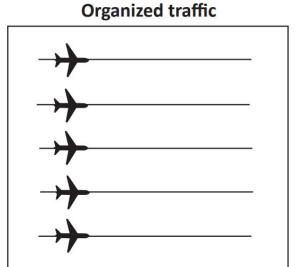
Most recent studies on climate-optimized flight planning:

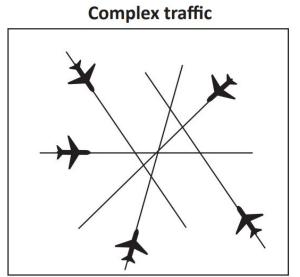
Forcing agents	Model	Routing	Uncertainty	Opt. scale
CO ₂ and non-CO ₂	aCCFs	FFRA	-3	Micro-scale
CO ₂ and non-CO ₂	aCCFs	FFRA	-	Micro-scale
CO ₂ and non-CO ₂	aCCFs	FFRA	-:	Micro-scale
CO ₂ and non-CO ₂	aCCFs	FFRA	-	Micro-scale
CO ₂ and non-CO ₂	aCCFs	FFRA	-	Micro-scale
Contrails	ISSR	Structured	-	Micro-scale
Contrails	CoCiP	Structured	-	Micro-scale
CO ₂ and non-CO ₂	aCCFs	Structured	MET	Micro-scale
CO ₂ and non-CO ₂	aCCFs	FFRA	MET	Micro-scale
CO ₂ and non-CO ₂	aCCFs	Structured	MET	Micro-scale
	CO ₂ and non-CO ₂ Contrails Contrails CO ₂ and non-CO ₂	CO ₂ and non-CO ₂ aCCFs Contrails ISSR Contrails CoCiP CO ₂ and non-CO ₂ aCCFs	CO ₂ and non-CO ₂ aCCFs FFRA Contrails ISSR Structured Contrails CoCiP Structured CO ₂ and non-CO ₂ aCCFs FFRA	CO ₂ and non-CO ₂ aCCFs FFRA – Contrails ISSR Structured – Contrails CoCiP Structured – CO ₂ and non-CO ₂ aCCFs Structured MET CO ₂ and non-CO ₂ aCCFs FFRA MET

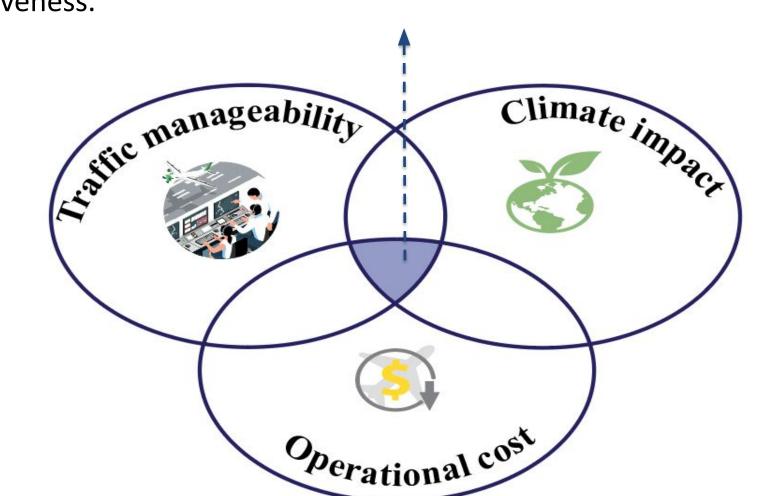
Existing studies have focused on micro-scale flight planning

The reported climate benefits in the literature might not be achievable in practice -> not reliable indicators to incentivize stakeholders

Research Gap: Climate-optimized flight planning at the network level to account for operational manageability of optimized flight plans.

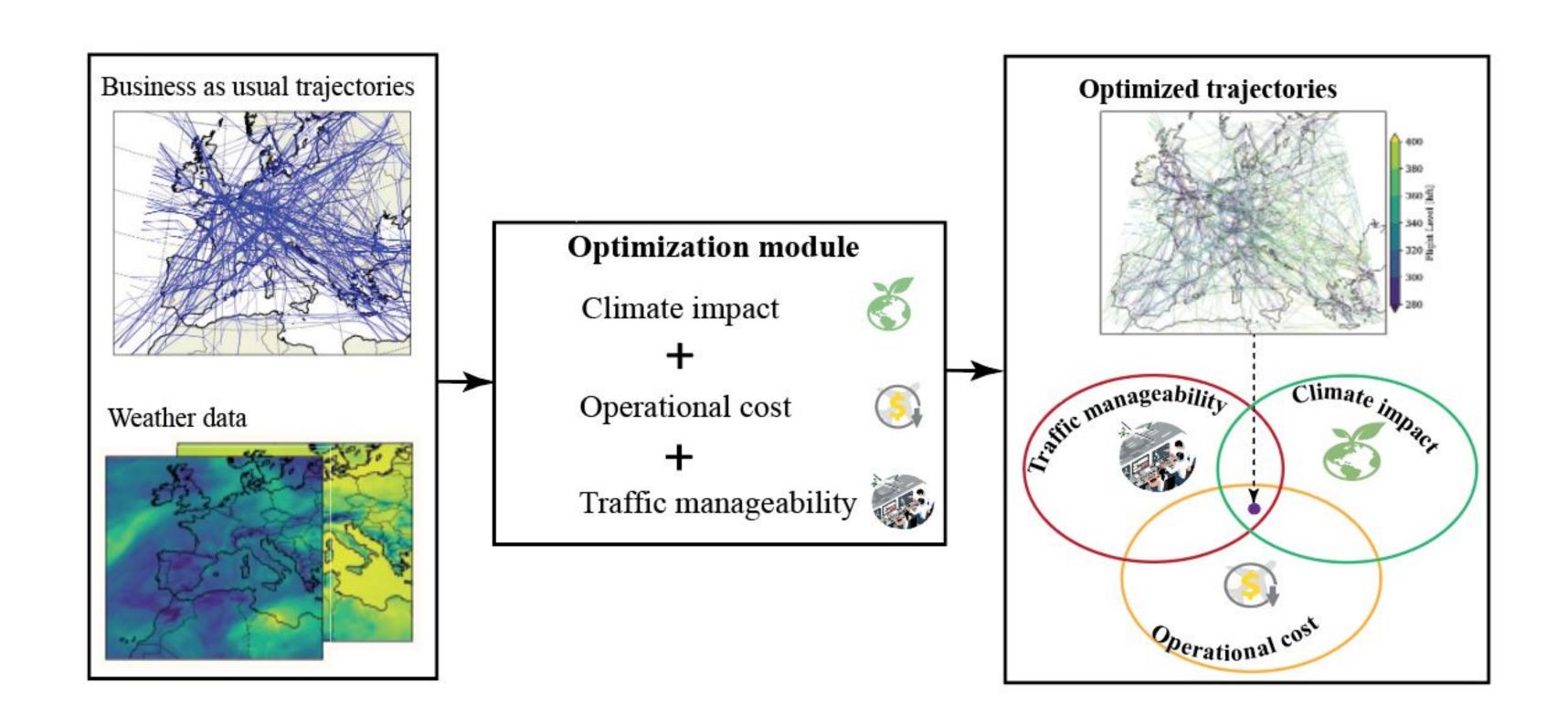




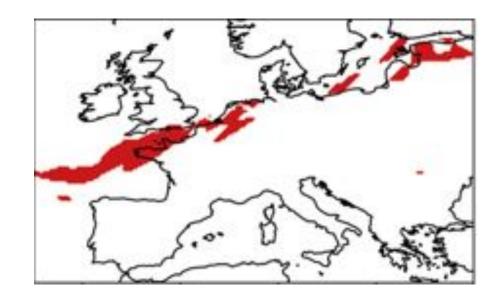

The goal is to plan aircraft trajectories at the network scale to:

- Mitigate the climate impact: The aim is to reduce their negative climate footprint.
- Maintain manageable traffic: Ensure that the complexity of the new trajectories remains at a level that can be easily managed and implemented.
- Ensure feasible operational cost: This serves as a measure of cost-effectiveness.

• **Complexity:** The level of difficulty in managing air traffic safely and efficiently


Goal

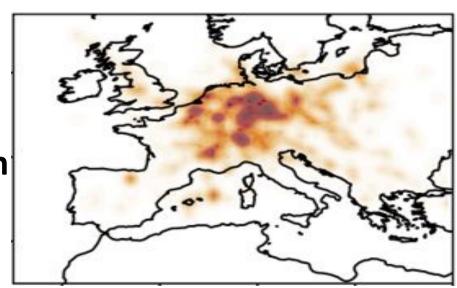
Framework for climate-optimal flight planning


Problem modeling

• Mitigate climate impact:

Identify climate hotspot areas

Modify flight trajectories to avoid climate hotspot areas



Maintain manageability:

Minimize/maintain the complexity of air traffic

Objective function

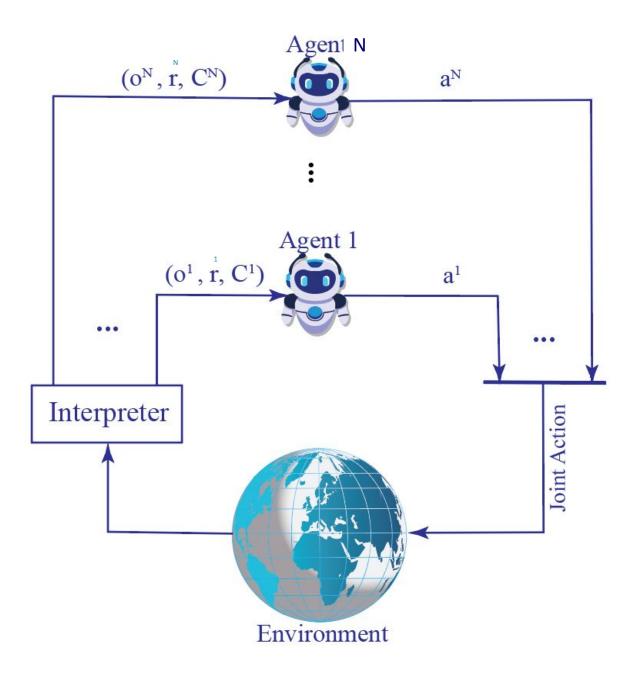
This problem can be addressed within the framework of constrained multi-agent reinforcement learning

Constrained multi-agent reinforcement learning framework

Formally, multi-agent reinforcement learning is modeled as a Constrained Markov Decision Process:

(N, A, O, R, C, c)

N: Number of aircraft


A: Joint action space

O: Observation space

R: Reward function

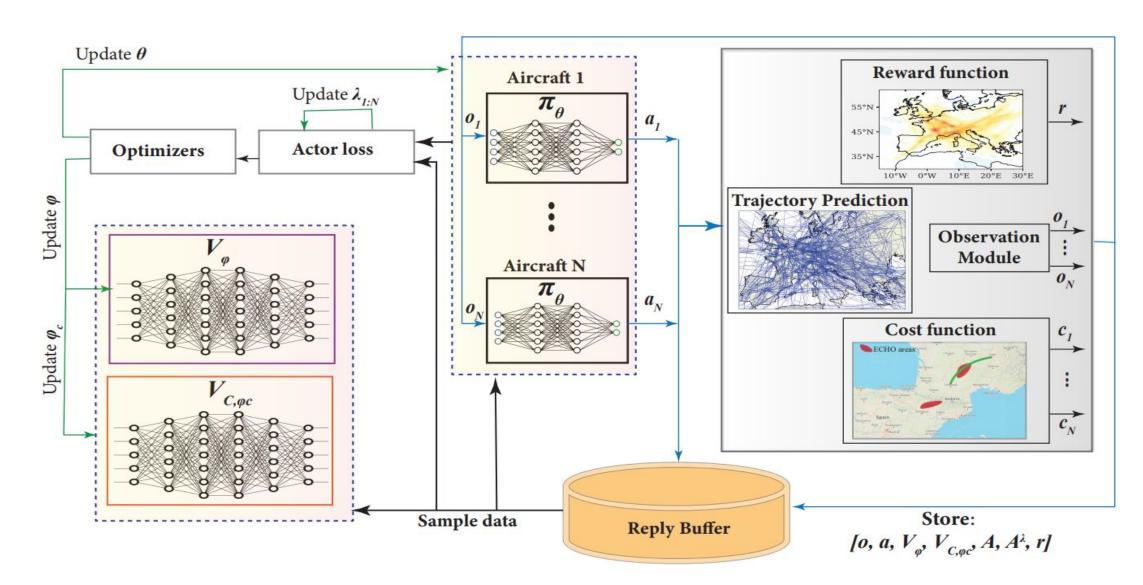
C: Cost of constraint violation

c: Threshold value

- At each time step t:
- Each agent receives a local observation o_t^i
- Takes action $a_t^i = \pi^i(a_t^i|o_t^i)$ according to its policy
- The joint action $a_t = (a_t^1, \dots, a_t^N)$ is applied to the environment
- Each agent receive a reward $R(o_t^i, a_t^i)$ and a cost $C(o_t^i, a_t^i)$

The goal is to find the optimal policy that:

Maximize


$$J(\pi) = \mathbb{E}_{a_t \sim \pi} \left[\sum_{t=0}^{T_f} R(o_t, a_t) \right]$$
s.t.

$$J^{i}(\pi) = \mathbb{E}_{a_{t}^{i} \sim \pi^{i}} \left[\sum_{t=0}^{T_{f}} \mathsf{C} \left(o_{t}^{i}, a_{t}^{i} \right) \right] < c$$

Casting climate-optimal trajectory planning at network scale as a constrained MARL problem

Observations

$$o_t^i = [\tau_t^i, E, \chi_t^i, p_t^i, v_t^i, T_t^i, I_t]$$

Trajectory data

$$\tau_t^i = [(\varphi_0, \lambda_0, h_0), \dots, (\varphi_k, \lambda_k, h_k)]$$

Hotspot areas

$$E = [(\varphi_{e_1}, \lambda_{e_1}, h_{e_1}), \dots, (\varphi_{e_{n_h}}, \lambda_{e_{n_h}}, h_{e_{n_h}})]$$

Neighboring Aircraft

$$I_t = ((r_v^1, r_\chi^1, r_\gamma^1), \dots, (r_v^m, r_\chi^m, r_\gamma^m))$$

Actions

Lateral adjustment

$$\varphi$$
, $\lambda + \Delta l$

$$\Delta l = [0.4, 0.2, 0, -0.2, -0.4]$$

• Altitude modification

$$FL + \Delta FL$$

$$\Delta FL = [20, 40, 0, -20, -40]$$

• Speed regulation

$$M + \Delta M$$

$$\Delta M = [-0.3, 0, 0.3]$$

Reward

$$R_{t} = \Psi_{0} - \sum_{i=1}^{N} \sum_{k=1, k \neq i}^{N} \Psi_{t}^{i,k}$$

$$\Psi_{t}^{i,k} = \sum_{k=1, k \neq i}^{g_{t+\Delta t}} (\nu^{i,k} + \varkappa^{i,k} + \upsilon^{i,k})$$

$$\Psi_t^{i,k} = \sum_{q_t}^{g_{t+\Delta t}} (\nu^{i,k} + \varkappa^{i,k} + \upsilon^{i,k})$$

Cost penalty

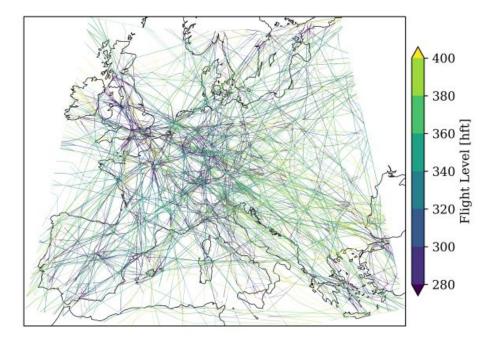
$$C_t^i = \begin{cases} c_h & \text{if } \tau_t^i \in E \\ 0 & \text{otherwise} \end{cases}.$$

E: Hotspot areas (ECHO areas)

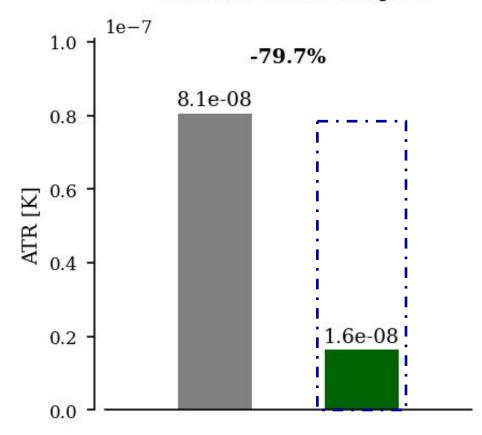
Results

Case study:

• **Date:** December 20^{th,} 2018


• Time: 12:00 to 14:00

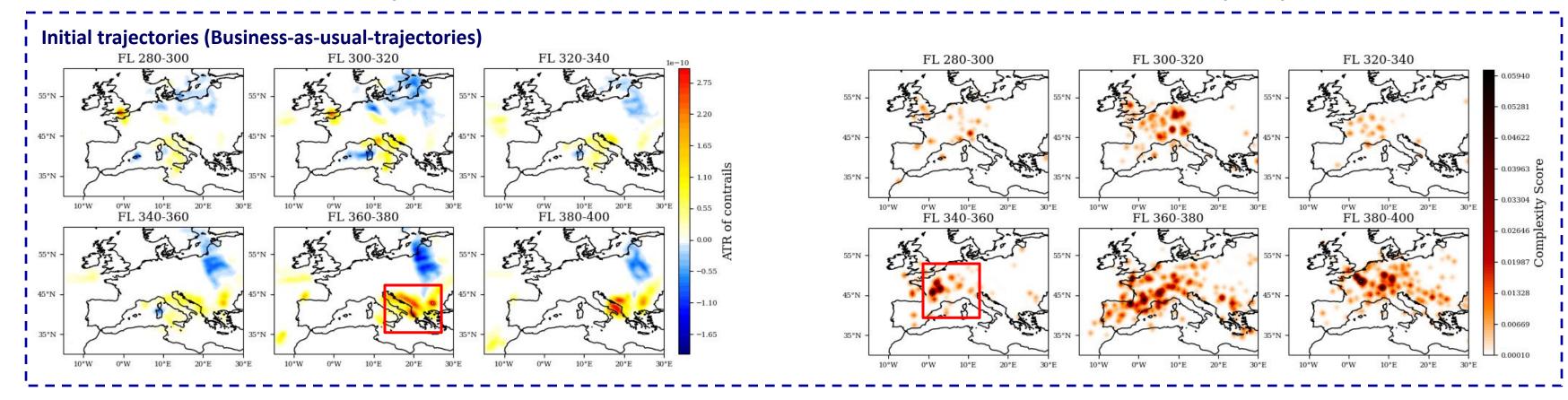
• Weather data: ERA5 reanalysis data

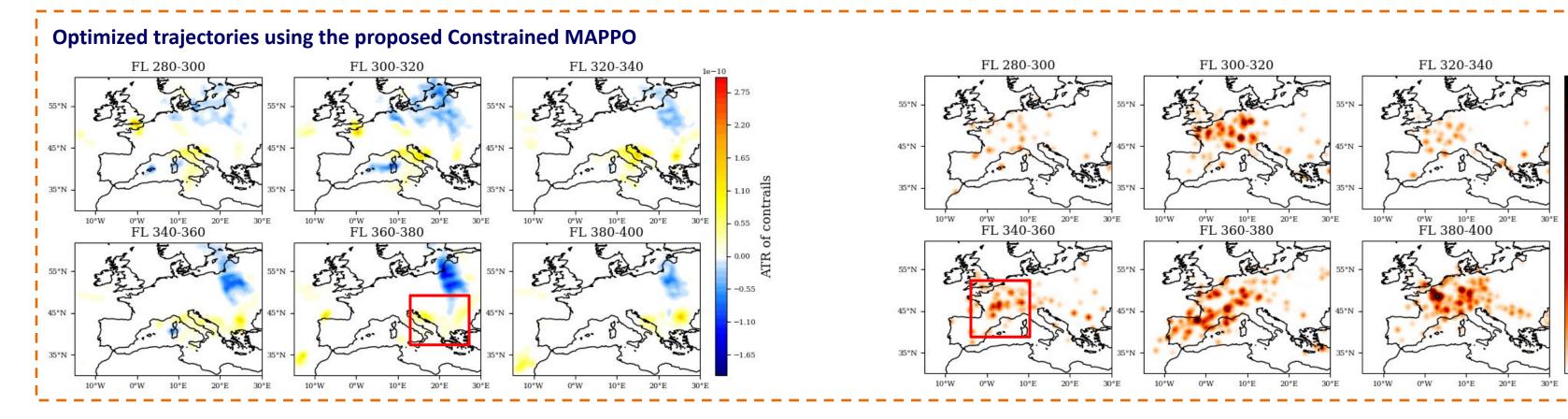

• Region: ECAC airspace

• Data source: DDR2

• Routing: Structured

Contrails climate impact




0.03304 S Complexity S 0.01987 O

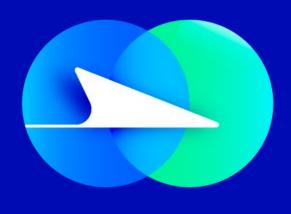
0.01328

Results Climate impact

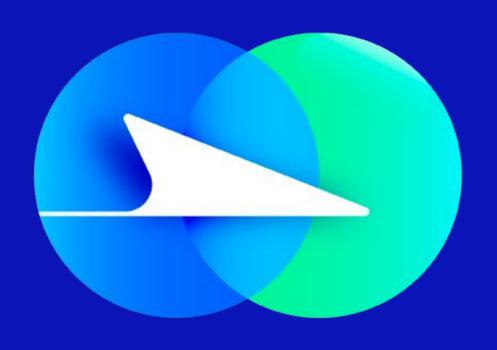
Air traffic complexity

Conclusions

	lanning aircraft trajectories to avoid climate-sensitive areas poses operational challenges, including creased traffic complexity.
□А	framework was introduced to plan climate-optimized trajectories at the air traffic network scale.
	ne presented approach employs the MARL algorithm and adapts it to handle constraints related to climate otspot avoidance.
	he proposed constrained MARL has the potential to plan operationally feasible climate-optimal trajectories, multaneously considering both climate impact and air traffic complexity.

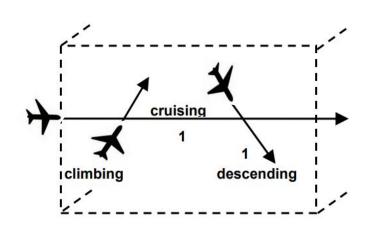

Thank you for your attention!

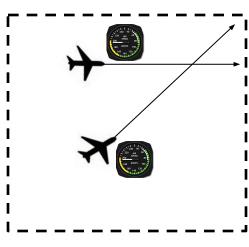
Fbaneshi@pa.uc3m.es

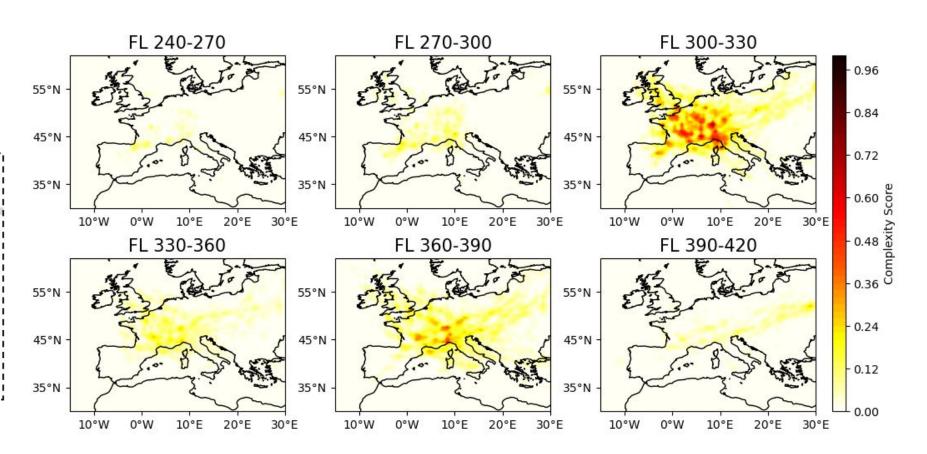


Q&A/Closing

AVIATION TWIN TRANSITION CLUSTER






Air traffic complexity

Vertical Interactions

Horizontal **Interactions** Speed Interactions

Complexity metric = Horizontal Interactions + Speed Interactions + Vertical Interactions

$$C_{clx}^{i} = \sum_{k=1, k \neq i}^{N} \sum_{g_0}^{g_f} \nu + \varkappa + \upsilon$$

$$\nu_{i} = \begin{cases} 2\tau^{2}/((t_{x}^{i} - t_{e}^{i}) + (t_{x}^{k} - t_{e}^{k})) & \text{if } ([t_{e}^{i}, t_{x}^{i}] \cap [t_{e}^{k}, t_{x}^{k}] \neq \varnothing) \quad and \quad (P^{i} \neq P^{k}) \\ 0 & \text{else} \end{cases}$$

$$\varkappa_{i} = \begin{cases} 2\tau^{2}/((t_{x}^{i} - t_{e}^{i}) + (t_{x}^{k} - t_{e}^{k})) & \text{if } ([t_{e}^{i}, t_{x}^{i}] \cap [t_{e}^{k}, t_{x}^{k}] \neq \emptyset) \quad and \quad (|\chi^{i} - \chi^{k}| > 20^{\circ}) \\ \text{else} \end{cases}$$

$$v_{i} = \begin{cases} 2\tau^{2}/((t_{x}^{i} - t_{e}^{i}) + (t_{x}^{k} - t_{e}^{k})) & \text{if } ([t_{e}^{i}, t_{x}^{i}] \cap [t_{e}^{k}, t_{x}^{k}] \neq \varnothing) \quad and \quad (|v^{i} - v^{k}| > 35kts) \\ 0 & \text{else} \end{cases}$$

$$\tau = [t_e{}^i, t_x{}^i] \cap [t_e{}^k, t_x{}^k].$$

Constrained Multi-agent Proximal policy Optimization

Objective:

$$\max_{\pi} \mathbb{E}_{a_t \sim \pi} \left[\sum_{t=0}^{T_f} R(o_t, a_t) \right]$$

s.t.
$$\mathbb{E}_{a_t^i \sim \pi^i} \left[\sum_{t=0}^{T_f} \mathsf{C} \left(o_t^i, a_t^i \right) \right] < c$$

Assumptions

Fully cooperative setting

The reward function R depends on the joint actions of all agents, and all agents receive the same reward.

Homogeneous agents

The policy is parametrized by θ and shared between agents.

Definitions:

$$V_R^{\pi}(s) := \mathbb{E}_{\mathbf{a}_t \sim \pi, s_t \sim \mathcal{P}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, \mathbf{a}_t) \mid s_0 = s \right]$$

$$V_{C^i}^{\pi}(s) := \mathbb{E}_{\mathbf{a}_t \sim \pi, s_t \sim \mathcal{P}} \left[\sum_{t=0}^{\infty} \gamma^t C^i(s_t, a_t^i) \mid s_0 = s \right]$$

Using adaptive Lagrange multipliers:

$$\max_{\theta} \min_{\lambda^i \ge 0, i \in \mathcal{N}} V_R^{\pi_{\theta}}(s_0) - \sum_{i \in \mathcal{N}} \lambda^i (V_{C^i}^{\pi_{\theta}}(s_0) - c^i)$$

Constrained Multi-agent Proximal policy Optimization

Objective:

$$\max_{\theta} \min_{\lambda^i \ge 0, i \in \mathcal{N}} V_R^{\pi_{\theta}}(s_0) - \sum_{i \in \mathcal{N}} \lambda^i (V_{C^i}^{\pi_{\theta}}(s_0) - c^i)$$

Proposed constrained multi-agent Proximal policy optimization (MAPPO):

• By clipping the probability ratio ($\frac{\pi_{\theta}}{\pi_{\theta_{\text{old}}}}$) within $(1-\epsilon,1+\epsilon)$ it ensures that the new policy remains close to the old policy.

$$L\left(\theta,\{\lambda^{i}\}_{i\in\mathcal{N}}\right):=\mathbb{E}_{\mathbf{a}\sim\pi_{\theta},s\sim p}\bigg[\sum_{i=1}^{N}\min\left(\frac{\pi_{\theta}(a^{i}\mid o^{i})}{\pi_{\theta_{\mathrm{old}}}(a^{i}\mid o^{i})}A_{\lambda^{i}}^{\pi_{\theta}}\left(s,\mathbf{a}\right),\left[\mathrm{clip}\left(\frac{\pi_{\theta}(a^{i}\mid o^{i})}{\pi_{\theta_{\mathrm{old}}}(a^{i}\mid o^{i})},1-\epsilon,1+\epsilon\right)A_{\lambda^{i}}^{\pi_{\theta}}\left(s,\mathbf{a}\right)\right]\bigg]$$

$$A_{\lambda^{i}}^{\pi_{\theta}}\left(s,\mathbf{a}\right):=\frac{A_{R}^{\pi_{\theta}}\left(s,\mathbf{a}\right)}{N}-\lambda^{i}\left(A_{C^{i}}^{\pi_{\theta}}\left(s,a^{i}\right)-c^{i}\right)$$

• A(s, a) is the advantage function evaluates the benefit of taking action a in state s relative to the baseline value.

We iteratively apply the following update rules:

$$\lambda^{i} \leftarrow \lambda^{i} - \alpha_{\lambda} \nabla_{\lambda^{i}} L\left(\theta, \{\lambda^{i}\}_{i \in \mathcal{N}}\right), \forall i \in \mathcal{N},$$

$$\theta \leftarrow \theta + \alpha_{\theta} \nabla_{\theta} L\left(\theta, \{\lambda^{i}\}_{i \in \mathcal{N}}\right),$$