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Motivation

Surface air temperature anomalies in 2024
Data: ERAS Reference period: 1991 2020

In 2024, the annual average temperature exceeded 1.5°C above
pre-industrial levels for the first time.

Aviation is one of the contributors to global warming:
* Carbon dioxide (CO,)
* Non-CO, effects, e.g., Contrails

Due to the rapid growth of the aviation sector, it faced increasing
pressure to reduce its climate footprint. 58 2 18

* Operational measures
(e.g., Flight Planning)
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* Feasible with existing infrastructures
* Relatively immediate solutions
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Global surface temperature anomalies and trends.

* Mitigation measures:

* Alternative fuels

* Technological advancements
* Can be beneficial for non-CO, effects
* Medium-to long-term measures

Lee, D. S., Fahey, D. W., Skowron, A., Allen, M. R., Burkhardt, U., Chen, Q., ... & Wilcox, L. J. (2021). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmospheric environment, 244,

117834.
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Research question

Is optimizing individual trajectories to reduce climate impact operationally feasible?

Adopting individually optimized trajectories:
* Redistributes traffic flow
* Increases the congestion in specific areas

* |t can adversely affect the overall performance of the ATM system
Climate-optimal flight planning needs to be studied at the network-scale
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State-of-the-art

Most recent studies on climate-optimized flight planning:

Study Forcing agents Model Routing Uncertainty Opt. scale

Yamashita et al. (2020) [50] CO2 and non-CO» aCCFs FFRA - Micro-scale
Liihrs et al. (2021) [58] CO,; and non-CO, aCCFs FFRA - Micro-scale
Yamashita et al. (2021) [51] CO; and non-CO» aCCFs FFRA - Micro-scale
Yin et al. (2022) [45] CO; and non-CO» aCCFs FFRA - Micro-scale
Castino et al. (2024) [62] CO; and non-CO» aCCFs FFRA - Micro-scale
Sausen et al. (2023) [59] Contrails ISSR Structured - Micro-scale
Frias et al. (2024) [20] Contrails CoCiP Structured - Micro-scale
Simorgh et al. (2022) [22] CO;7 and non-CO» aCCFs Structured MET Micro-scale
Simorgh et al. (2024) [61] CO; and non-CO, aCCFs FFRA MET Micro-scale
Simorgh et al. (2024) [19] CO2 and non-CO» aCCFs Structured MET Micro-scale

Existing studies have focused on micro-scale flight planning

The reported climate benefits in the literature might not be achievable in practice -> not reliable indicators to incentivize stakeholders

Research Gap: Climate-optimized flight planning at the network level to account for operational manageability of optimized flight plans.
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Objectives

The goal is to plan aircraft trajectories at the network scale to:
* Mitigate the climate impact: The aim is to reduce their negative climate footprint.
* Maintain manageable traffic: Ensure that the complexity of the new trajectories remains at a level
that can be easily managed and implemented.

* Ensure feasible operational cost: This serves as a measure of cost-effectiveness.

>
* Complexity: The level of difficulty in managing air traffic é’
safely and efficiently

Organized traffic Complex traffic

AKX
x
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FrameworK for climate-optimal flight planning

Business as usual trajectories Optimized trajectories
KX - AFE
YA

Optimization module

Climate impact @5
+

Weather data Operational cost G
: + -
Traffic manageability %
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Problem modeling

e Mitigate climate impact:

ldentify climate hotspot areas Constraints
Modify flight trajectories to avoid climate hotspot areas
* Maintain manageability:
Minimize/maintain the complexity of air traffic Objective function

This problem can be addressed within the framework of constrained multi-agent reinforcement learning
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Constrained multi-agent reinforcement learning framework

Formally, multi-agent reinforcement learning is modeled as a Constrained Markov Decision Process:

(N,A O, R C,c)

N: Number of aircraft

A: Joint action space

O: Observation space

R: Reward function

C: Cost of constraint violation

c: Threshold value

Ageni N
@5 O a

e ?
\

Agent 1
©'.1.C) QD) a!

R(w;.

Interpreter

Joint Action

At each time step t:

* Each agent receives a local observation o}

* Takes action al = ni(aﬂo{l) according to its policy
* The joint action a,= (a}, ..., al) is applied to the
environment

Each agent receive a reward R(o%, at) and a cost C(of, al)

The goal is to find the optimal policy that:

Maximize
Ty
J(m) = Eq, ~n | t—oR(Ot' ar)]
Ss.t.

JH ) = By i [BLoClohab)| < c
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Casting climate-optimal trajectory planning at network scale as a constrained MARL problem

Update 0 o P
o > Alkcrafel - Reward function
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Results
Case study:

400

380

]

* Date: December 20™ 2018 e Time: 12:00 to 14:00 * Weather data: ERAS reanalysis data 360 £
340%
* Region: ECAC airspace e Data source: DDR?2 * Routing: Structured 3zo§=’
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Contrails climate impact
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B Business-as-usual trajectories Bl Optimized trajectories using CMAPPO
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Climate impact Air traffic complexity
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Conclusions

[ Planning aircraft trajectories to avoid climate-sensitive areas poses operational challenges, including
increased traffic complexity.

[ A framework was introduced to plan climate-optimized trajectories at the air traffic network scale.

[ The presented approach employs the MARL algorithm and adapts it to handle constraints related to climate
hotspot avoidance.

[ The proposed constrained MARL has the potential to plan operationally feasible climate-optimal trajectories,
simultaneously considering both climate impact and air traffic complexity.
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Constrained Multi-agent Proximal policy Optimization

Ty

Objective: max Eq, ~m [ t=OR (0r, at)]

s.t.
T .
E i ni [tho (o}, aﬁ)] <c

/ Assumptions \

* Fully cooperative setting

The reward function R depends on the joint actions of all agents, and all agents receive the same reward.

« Homogeneous agents

\ The policy is parametrized by @ and shared between agents. /
" Definitions: )
Vi(s) = Eqn.si~p Z v R(si,a4) | s = s VEi(s) := Ea,n.si~P Z VIC (84, a}) | 5o = s
t=0 t=0
\ /

Using adaptive Lagrange multipliers:

max min V3?(sp) — Z NV (s0) — )

0  A\>0,ieN —
7 E."\/'
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Constrained Multi-agent Proximal policy Optimization

Objective: : z
J max min (Sp) g /\ —c')

6 \i>0, ie\
ieN

Proposed constrained multi-agent Proximal policy optimization (MAPPO):

* By clipping the probability ratio ( ﬂ) within (1 -614 e) it ensures that the new policy remains close to the old policy.

f 901(1

N

N R l 2 P
L (0, {IN}en) = Earrgosmp [Z min ( o ('(.l' | ¢ ) Al (s,a), |clip ( m;(q | v ). 1—€ 1+ (1 AT? (s, a)) ]

i~1 Toa (@' | 0) o, (0’ | 0')

A} (s,a)

AY (s,2) i= == = A (Ag (s,a') =€)

* A(s,a) is the advantage function evaluates the benefit of taking action a in
state s relative to the baseline value.

We iteratively apply the following update rules:
A= N — a)\V il (9. {X},fc_‘\r) ,VieN,

0 + 0 (,va()L (0 {/\i},&-',\.") .



